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Single-cell genomics assays have emerged as a dominant plat-
form for interrogating complex biological systems. Methods 
to capture various properties at the single-cell level typically 

suffer a tradeoff between cell count and information content, which 
is defined by the number of unique and usable reads acquired per 
cell. We and others have described workflows that use single-cell 
combinatorial indexing (sci)1, leveraging transposase-based 
library construction2 to assess a variety of genomic properties 
in high throughput; however, these techniques often produce 
sparse coverage for the property of interest. Here we describe an 
adapter-switching strategy, ‘s3’, capable of producing one-to-two 
order-of-magnitude improvements in usable reads obtained per 
cell for chromatin accessibility (s3-assay for transposase-accessible 
chromatin, s3-ATAC), whole-genome sequencing (s3-WGS) and 
whole-genome plus chromatin conformation (s3-GCC), while 
retaining the same high-throughput capabilities of predecessor 
‘sci’ technologies. We apply s3 to produce high-coverage single-cell 
ATAC with high-throughput sequencing (ATAC-seq) profiles of 
mouse brain and human cortex tissue; and whole-genome and 
chromatin contact maps for two low-passage patient-derived cell 
lines (PDCLs) from a primary pancreatic tumor.

The core component of many sci assays, as well as ATAC-seq, is 
the use of transposase-based library construction. While the trans-
position reaction itself (tagmentation) is highly efficient, viable 
sequencing library molecules are only produced when two different 
adapters, in the form of forward or reverse primer sequences, are 
incorporated at each end of the molecule. This occurs only 50% of 
the time (Fig. 1a). To combat this inefficiency, strategies including 
the use of larger complements of adapter species3, incorporation of 
T7 promoters to enable amplification via in vitro transcription4–6, or 
reverse adapter introduction through targeted7 or random priming8 
or ligation9 have been developed; however, these methods are often 
complex and result in limited efficiency improvements. Here we 

present a strategy of adapter replacement to produce library mol-
ecules tagged with both forward and reverse adapters for top and 
bottom strands. In addition to overcoming the 50% yield limitation, 
the efficiency of opposite adapter incorporation is also improved 
when compared to standard tagmentation. This is due to the use of 
multiple rounds of extension as opposed to a single extension before 
PCR. This format permits the use of a DNA index sequence embed-
ded within the transposase adapter complex, enabling single-cell 
combinatorial indexing (sci) applications, where two rounds of 
indexing are performed—the first at the transposition stage and 
second at the PCR stage1,8,10.

Our strategy, symmetrical strand sci (s3; Fig. 1b) uses 
single-adapter transposition to incorporate the forward primer 
sequence, the Tn5 mosaic end sequence and a reaction-specific 
DNA barcode. As with standard tagmentation workflows, extension 
through the bottom strand is then performed to provide adapter 
sequences on both ends of each molecule; however, the s3 trans-
posome complexes contain a uracil base immediately following the 
mosaic end sequence. Use of a uracil-intolerant polymerase there-
fore prevents extension beyond the mosaic end into the DNA bar-
code and forward adapter sequence. A second template oligo is then 
introduced that contains a 3′-blocked (inverted dT) locked nucleic 
acid (LNA) mosaic end reverse complement sequence with a reverse 
adapter sequence 5′ overhang. This oligo favorably anneals to the 
copied mosaic end sequence, due to the higher melting temperature 
of LNA, and acts as a template for the library molecule to extend 
through and copy the reverse adapter. This results in all library 
fragments having both a forward and reverse adapter sequence. 
The LNA-templated extension is carried out over multiple rounds 
of thermocycling to ensure maximum efficiency of reverse adapter 
incorporation, which provides an additional improvement over 
traditional tagmentation workflows where only a single pre-PCR 
extension is possible. Furthermore, adapter sequences are designed 
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such that standard sequencing recipes can be used instead of the 
custom workflows and primers that are required for current indexed 
transposition technologies (Supplementary Tables 1–5)11,12, making 
use of the TruSeq read 2 and index read 1 sequencing primer and 
the standard Nextera read 1 and index read 2 primer.

Results
s3-ATAC creates high-content chromatin profiles. We first sought 
to establish the s3 technique to assess chromatin accessibility. In 
s3-ATAC, nuclei are isolated and tagmented using our single-ended, 
indexed transposomes and carried through the adapter-switching 
s3 workflow (Fig. 1b). To ensure we attain true single-cell librar-
ies without contamination from other nuclei, and minimal barcode 
collisions, we performed a mixed-species experiment on primary 
frozen human cortical tissue from the middle frontal gyrus and fro-
zen mouse whole-brain tissue (Fig. 2a). We elected to perform this 
test on primary tissue samples instead of an idealized cell line set-
ting to more accurately capture the rates of cross-cell contamination. 
Levels of crosstalk were assessed at both points of possible introduc-
tion: the tagmentation and PCR stages; by mixing nuclei from the 
two samples before tagmentation as well as after. Additionally, pure 
species libraries were produced by leveraging the inherent sample 
multiplexing capabilities of sci workflows. In the experimental con-
dition where nuclei were mixed before any processing, that is pre-
tagmentation, we observed a total estimated collision rate of 5.53%  
(Fig. 2b,c, 2 × 2.77% detected human–mouse collisions), compara-
ble to existing methods and tunable based on the number of nuclei 
deposited into each PCR indexing reaction. Zero collisions were 
observed in the posttagmentation experimental conditions, sug-
gesting no molecular crosstalk during s3 adapter switching or PCR.

In total, we generated 2,175 human and 837 mouse single-cell 
ATAC-seq profiles passing quality filters (Methods) across four PCR 
indexing plates (Fig. 2a). We then assessed the total unique sequence 
reads obtained per cell as a function of the total aligned reads, that 
is, the library complexity. One of our mixed-species plates was 
sequenced to beyond 50% saturation (duplicate reads/total reads), to 
represent the sequencing depth obtained where diminishing returns 
of increased sequence depth become excessive10. For this plate, the 
mean sequencing saturation per cell was 63.6% and resulted in a 
median unique read count per cell of 178,069 (mean = 258,859, 
statistics on all plates can be found in Supplementary Table 6). The 
human cells reached a mean sequencing saturation of 56.6% with 
a median unique reads per cell of 99,882 (mean = 175,361). We 
additionally sequenced a plate that contained only human cells to 
a mean sequencing saturation of 70.4%, which produced a median 
of 100,280 (mean = 146,937) unique reads per cell (Supplementary 
Table 6). When compared to other single-cell ATAC-seq datasets 
performed on mouse whole-brain tissue, our mouse s3-ATAC librar-
ies contain substantially greater properly paired, unique, nuclear 
reads per cell with 13.7-, 6.02- and 6.22-fold improvement compared 
to single-nucleus ATAC-seq (snATAC), 10x Genomics single-cell 
ATAC (scATAC) and droplet single-cell ATAC-seq (dscATAC), 
respectively (Fig. 2d and Supplementary Table 7)13–15. Read-count 
increases can be indicative of poor ATAC-seq library quality, with 
increased depth reflecting increased noise and loss of signal at open 
chromatin regions. To address this, we first assessed read pair insert 
sizes, revealing the characteristic nucleosome-size banding distribu-
tion of ATAC-seq (Fig. 2e)16. We next calculated transcription start site 
(TSS) enrichment using the approach defined by the ENCODE proj-
ect (Methods). This produced notable enrichment for both species  
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Fig. 1 | Symmetrical strand single-cell combinatorial indexing ATAC-seq (s3-ATAC) improves molecular capture rate. a, Schematic of standard sci-ATAC 
library construction. b, Schematic of s3-ATAC library construction with intermediate steps of adapter switching leading to increased genomic molecule 
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at 13.4 for human, well above the ‘ideal’ standard (>7) and 13.5 for 
mouse, within the acceptable range and just below ideal (>15, Fig. 2f).  
Similarly, the fraction of reads in pile-up genomic regions (peaks, 
FRiP) was comparable to other single-cell ATAC technologies at 
31.95 and 29.15% as measured using 292,156 and 174,653 peaks 
for human and mouse cells, respectively. However, FRiP is largely 
dependent on the number of peaks called, which is influenced heav-
ily by cell number and total sequence depth obtained. When expand-
ing to a human cortex high-depth ATAC-seq peak set, a mean of 
48.1% of reads were present in peaks and mean of 78.2% of reads 
for mouse cells using a high-depth mouse brain ATAC-seq peak set 
(Supplementary Information and Methods). We further compared 
peak overlap between the matched datasets to assess any systematic 
bias in s3-ATAC, with all assays performing comparably with respect 
to the proportion of overlapping reads for each other assay (Fig. 2g).

s3-ATAC resolves cell types in the mammalian brain. With ample 
signal, we next sought to discern cell types present within the com-
plex tissues. For each species, we used peaks called on aggregate data 
to construct a count matrix followed by dimensionality reduction 
using the topic-modeling tool cisTopic17, which we then visualized 
using uniform manifold approximation and projection (UMAP)18, 
performed graph-based clustering at the topic level and processed 
via Signac19. Clear separation of cell types was observed using 
marker gene signal and differential accessibility profiles (Fig. 1h,  
Supplementary Information and Supplementary Fig. 1a)15,20. Finally, 
we assessed any systematic bias that may affect biological interpre-
tation by integrating our datasets with snATAC, 10X Genomics 
scATAC, dscATAC and sciMAP-ATAC (Fig. 2i)13–15,21. We observed 
that our libraries readily integrate across platforms, maintaining cell 
type discrimination between clusters.
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Fig. 2 | s3-ATAC on human cortex and mouse whole brain. a, Experimental flow through and plate layout for the mixed-species experiment, including 
tagmentation and PCR plate conditions per well. b,c, Scatter plots of single-cell libraries with counts of unique reads aligned to mouse or human 
chromosomes in a chimeric reference genome. Points are colored to reflect species assignment (Methods) in both pretagmentation mixing (b) and 
posttagmentation mixing (c). d, Comparison of unique read counts per cell, restricted to only properly paired reads for s3-ATAC mouse whole-brain 
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whole-brain cell samples (n = 837 cells) colored by cluster and cell type assignment (left). UMAP projection human cortex cell samples (n = 2,175 cells; 
right). i, Integration of s3-ATAC mouse data with other datasets. Points colored by cell type (respective of h) or external dataset (gray).
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Notably, even with the modest cell count produced by this 
experiment, the quality improvements allow us to interrogate sub-
clusters of inhibitory neurons previously difficult to distinguish in 
atlas-level datasets (Fig. 3a)22. With our improved cell depth, we 
were able to discern caudal and medial ganglionic eminence inhibi-
tory neurons by marker gene coverage plots across 342 GAD1+ 
cells (CGE and MGE, respectively). From these, we identified 157 
GAD1+, ADARB2 + CGE cells and 168 GAD1+, LHX6 + MGE cells 
(Fig. 3b). We identified 17 cells (subcluster 4) as putative doublets 
given the coexpression of both LHX6 and ADARB2 and excluded 
them from subsequent analyses. Aggregated genomic signal over 
our topic-based dimensionality reduction was used to support our 
marker gene cell subtype discrimination and describe differentially 
accessible loci in human cortical inhibitory neurons (Supplementary 
Information). We grouped topics based on cell embeddings (Fig. 3c,  
top) through hierarchical clustering, and observed topic-based 
enrichment of sites overlapping cell type specific marker genes pre-
viously defined through transcriptomics (Fig. 3c, bottom)20. This 
analysis did not identify a specific topic (or topics) associated with 
MGE/SST+ cells; however, accessibility at SST was elevated specifi-
cally in cluster 0 (Fig. 3c, right).

To further assess the impact of increased coverage in our s3-ATAC 
data, we performed a random read downsampling analysis fol-
lowed by peak calling, topic modeling and cell type discrimination 
(Methods and Supplementary Fig. 1b). As expected, the increased 

reads produced a greater number of called peaks (Supplementary 
Fig. 1c), although peak calling is a function of the total reads and 
can be improved by either greater cell number or greater cover-
age per cell. When examining the downsampled data performance 
on cell type discrimination, major cell types could be discerned 
with only 15 or 20% of reads used for human and mouse datasets, 
respectively (Supplementary Fig. 1d). However, as reads increased, 
cell types separated more cleanly and produced additional granular-
ity (for example, inhibitory neurons). As a final examination of the 
advantages provided by improved library complexity, we assessed 
the impact on sequencing depth required to reach a comparable 
number of unique, passing reads per cell in our s3-ATAC library 
when compared to sci-ATAC, which produces libraries with a lower 
overall complexity (Supplementary Fig. 1e). When targeting a total 
of 10,000 unique reads per cell, the s3-ATAC library resulted in the 
removal of only 1.2% of reads as PCR duplicates when compared 
to 27–38% for the lower-complexity preparations. This directly 
translates to a reduction in sequencing costs of roughly one-third, 
enabling studies that want to profile larger cell numbers at a lower 
depth to do so more efficiently.

s3 for whole-genome and chromatin conformation capture. We 
then extend the improvements in data quality produced by s3-ATAC 
to other sci- workflows. This includes our previously described 
sci-DNA-seq method10 that produces s3-WGS and a strategy to 
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incorporate the core components of HiC library preparation but 
without ligation junction enrichment to produce s3-GCC (Fig. 4a). 
Both strategies disrupt nucleosomes to acquire sequence reads uni-
formly across the genome10, which we also improved for the s3 assay 
by optimizing fixation conditions. All experiments were performed 
using the same number of indexed tagmentation reactions and the 
same number of nuclei deposited into each PCR indexing well to 
achieve a comparable expected doublet rate as with the s3-ATAC 
experiments. We first tested s3-WGS by producing two small-scale 
libraries on the diploid lymphoblastoid cell line, GM12878. The first 
library comprised only four wells at the PCR stage for a target of 60 
cells, allowing us to sequence the library to a high depth (Fig. 4b). 
This produced a median passing read count per cell of 12,789,812 
(mean = 15,238,184), across 45 QC-passing cells (75% cell capture 
efficiency). With our sequenced library at 72.35% saturation, our 
complexity is notably higher than the predecessor sci-DNA-seq 
technology, which produced a median of 43,367 reads per cell 
(mean = 103,138) at the same sequencing saturation (295- and 
148-fold improvement in median and mean, respectively, Fig. 4d)10. 
This improvement is based on a combination of the s3 workflow, 
optimization of the nucleosome disruption and the added benefit of 
thermocycling during s3 adapter switching, which likely improves 
crosslink reversal before PCR. The second preparation performed 
comparably, although sequenced to a lower total depth (15.98% 
saturation). We also confirmed that the coverage was uniform by 
assessing the median absolute deviation (MAD) across 500-kilobase 
(kb) bins, which fell within 0.152 ± 0.025 (mean ± s.d.), comparable 
to other single-cell genome sequencing techniques (Fig. 4e)10,23,24.

We performed s3-WGS and s3-GCC on two cell lines derived 
from a single primary pancreatic ductal adenocarcinoma (PDAC) 

tumor (Fig. 4b). PDAC is a highly aggressive cancer that typically 
presents at an advanced stage, making early detection and study of 
tumor progression key25. PDAC studies suffer from a low cancer cell 
fraction in biopsied samples, thus we used PDCLs maintained at 
fewer than ten passages. This method allows for multiple modalities 
of characterization and perturbation, while maintaining a large por-
tion of the heterogeneity present in the tumor sample26. We targeted 
two PDCLs (referred to as PDAC-1 and PDAC-2) derived from the 
same parent tumor, which had a driver mutation in the oncogene 
KRAS (p.G12D) and profound genomic instability, as indicated by 
karyotyping (Fig. 4c). For our s3-WGS preparations, we produced 
773 and 256 single-cell libraries with a mean passing read counts of 
1,181,128 and 1,299,949 for PDAC-1 and -2 (at a combined median 
of 28.46% saturation), respectively. The s3-GCC libraries contained 
57 and 145 cells produced a mean passing read count of 973,397 
and 1,588,926 (combined median 73.25% sequencing saturation) 
for PDAC-1 and -2, respectively (Fig. 4f). MAD scores for the two 
lines were greater than that of the diploid karyotype of GM12878, 
0.219 ± 0.041 (mean ± s.d.); however, this is expected given the 
widespread copy number alterations present in the samples. In addi-
tion to the WGS component, the s3-GCC libraries also contained 
reads that were identified as chimeric ligation junctions that provide 
HiC-like chromatin conformation signal, with a distal contact dis-
tribution comparable to bulk HiC datasets (Supplementary Fig 3a). 
Across both samples, we identified a mean of 118,048 reads per cell 
that capture genomic contacts at least 50 kb apart from one another, 
a 14.8-fold improvement over the previous high-throughput 
single-cell combinatorial indexing technique, sci-HiC27 (Fig. 4g and 
Supplementary Information) and comparable to low-throughput 
scHiC methods that process cells individually28, with the exception 
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of Dip-C, which can achieve exceeding 1 × 106 contact counts3. Read 
pairs spanning ≥50 kb accounted for a median of 15.6 and 17.0% of 
the total reads obtained per cell, which equates to an enrichment of 
361- and 402-fold over that of the s3-WGS libraries for PDAC-1 and 
-2, respectively (Supplementary Table 8).

s3-WGS and s3-GCC resolve subclonal alterations in PDCLs. We 
first focused our analysis on the s3-WGS and the WGS component 
of the s3-GCC libraries to examine the copy number alterations 
present in the lines. To get a sense of the genomic landscape, we 
first performed copy number calling on whole-exome sequencing 
(WES) libraries that were generated using primary tumor tissue 
and on the PDCL line PDAC-1, derived from the tumor (Fig. 5a). 
This revealed a profile of copy number aberrations at finer resolu-
tion, with a more pronounced profile in the PDCL sample, likely 
due in part to less euploid stromal cell contamination. We then 
processed all single-cell libraries using SCOPE23, which revealed a 
highly altered genomic landscape within each of the two samples. In 
line with paired karyotyping and bulk exome data, we see a similar 
pattern per cell of multi-megabase copy number aberrations when 
performing breakpoint analysis on 500-kb windows, with a median 
depth per window of 81 reads. Using the inferred copy number pro-
file within genomic windows for the three samples, GM12878 and 

two PDAC lines, we performed hierarchical and K-means cluster-
ing on the Jaccard distance between cell breakpoint copy numbers 
at two different centroid counts. For our optimal centroid value, 
we found a relatively clean separation between cell lines (k = 3), 
for subclonal analysis we used a higher centroid count at local 
optima (k = 6). s3-WGS and s3-GCC cells cluster dependent on 
cell line, reflecting our ability to capture genome-wide copy num-
ber data in our s3-GCC libraries (Fig. 5b). We generated pseudo-
bulk clades from the single-cell read-count bins, with an average of 
211.3 cells per clade and an average read count of 3,750 per 50-kb 
bin. This revealed multiple fixed and subclonal genomic arrange-
ments (Supplementary Fig. 2a,b). In PDAC-1 and -2 we see shared 
copy number loss of tumor supressor genes CDKN2A, SMAD4 and 
BRCA2 (refs. 25,29). In PDAC-2 we observed a subclonal amplifica-
tion of PRSS1, a mutation that was fixed within our sampling for 
PDAC-1 and is associated with tumor size, tumor node metastasis 
rate30. This suggests that while the lines have the same origin, each 
culture captured different subsets of tumor clonal populations.

Duplications and deletions are not the sole form of genomic rear-
rangement that may induce a competitive advantage in cancer cell 
growth. Genomic inversions are difficult to assess through standard 
karyotyping and chromosome painting methods, whereas chro-
mosomal translocations are difficult to uncover in whole-genome 
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amplification methods, since only reads capturing the breakpoint 
would provide supportive evidence. To address both of these limi-
tations, we used the HiC-like component of our s3-GCC libraries. 
Using read pairs spanning ≥50 kb, we produced chromatin contact 
maps that produced clear chromatin compartmentalization signal 
(Fig. 5c)27. Single cells were separated by their distal contact infor-
mation via scHiC topic modeling and observed distinct clusters by 
PDCLs31. Notably, even at this relatively low sequencing depth, we 
were able to reliably tell PDCL line sparse contact profiles apart 
(Fig. 5d and Supplementary Fig. 3b,c). Differences between the 
aggregated contact maps between clusters were then used to assess 
unique translocation and inversion events across the sampled cells. 
This identified a putative intrachromosomal translocation between 
the 8.5–9.5 and 88.5–91.0-megabase (Mb) regions of chromosome 
12 (Fig. 5e), which exhibited contact signal comparable to proximal 
regions in sequence space (Supplementary Fig. 3d). The putative 
translocation contained ATP2B1, which is commonly overexpressed 
in PDAC32 and the tumor suppressor gene DUSP6 (ref. 33), and is 
only present in PDAC-1.

Discussion
Our s3 workflow provides marked improvements over the prede-
cessor sci platform with respect to passing reads obtained per cell 
without sacrificing signal enrichment in the case of s3-ATAC, or 
coverage uniformity for s3-WGS. We also introduce another vari-
ant of combinatorial indexing workflows, s3-GCC to obtain both 
genome sequencing and chromatin conformation, with improved 
chromatin contacts obtained per cell when compared to sci-HiC. 
We demonstrate the use of these approaches by assessing two 
patient-derived tumor cell lines with genomic instability. Our analy-
sis reveals patterns of focal amplification for disease-relevant genes, 
and uncover wide-scale heterogeneity at a throughput not attainable 
with standard karyotyping. Additionally, we highlight the joint anal-
ysis of our protocols for uncovering the chromatin compartment 
disrupting effect of copy number aberrations. Furthermore, the s3 
workflow has the same inherent throughput potential of standard 
single-cell combinatorial indexing, with the ability to readily scale 
into the tens and hundreds of thousands of cells by expanding the 
set of transposome and PCR indexes. We also expect that this plat-
form will be compatible with other transposase-based techniques, 
including sci-MET8 or CUT&Tag34. Last, unlike sci workflows, the 
s3 platform does not require custom sequencing primers or custom 
sequencing recipes, removing one of the main hurdles that groups 
may face while implementing these technologies.
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ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
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Methods
PDCL propagation. Low-passage, PDCLs were propagated from rapidly 
dissociated PDAC tumors and cultured for continuous propagation in culture 
medium containing ROCK inhibitor (Y-276320)36. Briefly, approximately 50,000 
viable, disaggregated tumor cells were plated to a 35 mm diameter, collagen-coated 
well (Gibco, A11428-02) and passaged 1:3 while subconfluent until reaching 85% 
confluence on a 10-cm diameter dish. From a fraction of these cells, DNA was 
extracted to validate the presence of KRAS-G12 mutations by droplet digital PCR 
(BioRad, 1863506) and to validate a short tandem repeat profile that matches 
normal leukocyte DNA from the same patient (Genetica). PDCLs exhibited 
morphologies consistent with epithelial tumor cells and abundant KRT expression 
was detected by immunocytofluorescence using the monoclonal antibodies: AE1/
AE3, C-11 and Cam5.2. To ensure that only tumor cells were cultured, G-banded 
karyotyping was performed by the Knight Diagnostic Research Cytogenetics 
Laboratory at the Oregon Health and Science University (OHSU). Chromosome 
spreads from more than 20 cells were observed to ensure that the culture contained 
100% tumor cells.

WES and analysis. WES libraries for the patient’s blood sample, tumor biopsy 
and PDCL were carried out by the Knight Diagnostic Research Cytogenetics 
Laboratory at OHSU. Libraries were prepared using 500 ng of fragmented 
genomic DNA using KAPA Hyper-Prep Kit (KAPA Biosystems) with Agilent 
SureSelect XT Target Enrichment System and Human All Exon V5 capture baits 
(Agilent Technologies), following the manufacturer’s protocols. Sequencing was 
carried out using the Illumina HiSeq 2500 platform by the OHSU Massively 
Parallel Sequencing Shared Resource. Paired-end reads were aligned with 
bwa mem (v.0.7.15-r1140) to GRCh38 (hg38, Genome Reference Consortium 
Human Reference37 (GCA_000001405.2))38. The data were processed following 
the best practices workflow for the GATK pipeline (v.4.1.9.0)39. Exome regions 
annotated as ‘protein-coding’ were extracted from GenCode (v.35)37 and used as 
the intervals for processing. The following commands were then used for WES 
data normalization and segmentation with additional options were specified: 
PreprocessInvertals, CollectReadCounts, AnnotateIntervals, FilterIntervals, 
CreateRedCountPanelOfNormals (using the matched blood sample as the 
normal, with minimum-interval-median-percentile set to 5.0) and finally 
PlotDenoisedCopyRatios. The output was then plotted with ggplot2 (v.3.3.2) in R 
(v.4.0.0). The geom_rect function was used to shade the genomic region based on 
the relative copy number with segmentation interval, and geom_point was used to 
plot normalized bin reads (Fig. 5a).

s3-ATAC library generation. A formatted stepwise protocol for s3-ATAC is 
available for review at https://doi.org/10.17504/protocols.io.bd6wi9fe.

Before sample handling, 96 uniquely indexed transposome complexes were 
assembled using previously described methods11. Complexes were diluted to 2.5 µM 
in a protein storage buffer composed of 50% (v/v) glycerol (Sigma G5516), 100 mM 
NaCl (Fisher Scientific S271-3), 50 mM Tris pH 7.5 (Life technologies AM9855), 
0.1 mM EDTA (Fisher Scientific AM9260G), 1 mM DTT (VWR 97061-340) and 
stored at −20 °C (Supplementary Table 2). At the time of nuclei dissociation, 
50 ml of nuclei isolation buffer (NIB-HEPES) was freshly prepared with final 
concentrations of 10 mM HEPES-KOH (Fisher Scientific, BP310-500 and Sigma 
Aldrich 1050121000, respectively), pH 7.2, 10 mM NaCl, 3 mM MgCl2 (Fisher 
Scientific AC223210010), 0.1% (v/v) IGEPAL CA-630 (Sigma Aldrich I3021), 
0.1% (v/v) Tween (Sigma Aldrich P-7949) and diluted in PCR-grade Ultrapure 
distilled water (Thermo Fisher Scientific 10977015). After dilution, two tablets of 
Pierce Protease Inhibitor Mini Tablets, EDTA-free (Thermo Fisher, A32955) were 
dissolved and suspended to prevent protease degradation during nuclei isolation.

For s3-ATAC tissue handling, primary samples of C57/B6 mouse whole brain 
were extracted and flash frozen in a liquid nitrogen bath, before being stored at 
−80 °C. Human cortex samples from the middle frontal gyrus were sourced from 
the Oregon Brain Bank from a 50-year-old female of normal health status. Tissue 
was collected at 21 h postmortem and then placed in a −80 °C freezer for storage. 
An at-bench dissection stage was set up before nuclei extraction. A petri dish was 
placed over dry ice, with fresh sterile razors prechilled by dry-ice embedding. Then 
7-ml capacity dounce homogenizers were filled with 2 ml of NIB-HEPES buffer 
and held on wet ice. Dounce homogenizer pestles were held in in ice cold 70% (v/v) 
ethanol (Decon Laboratories Inc. 2701) in 15-ml tubes on ice to chill. Immediately 
before use, pestles were rinsed with chilled distilled water. For tissue dissociation, 
mouse and human brain samples were treated similarly. The still frozen block 
of tissue was placed on the clean prechilled petri dish and roughly minced with 
the razors. Razors were then used to transport roughly 1 mg of the minced tissue 
into the chilled NIB-HEPES buffer within a dounce homogenizer. Suspended 
samples were given 5 min to equilibrate to the change in salt concentration before 
douncing. Tissues were then homogenized with five strokes of a loose (A) pestle, 
another 5 min of incubation and five to ten strokes of a tight (B) pestle. Samples 
were then filtered through a 35-µm cell strainer (Corning 352235) during transfer 
to a 15 ml conical tube, and nuclei were held on ice until ready to proceed. Nuclei 
were pelleted with a 400 relative centrifugal field (r.c.f.) centrifugation at 4 °C in a 
centrifuge for 10 min. Supernatant was removed and pellets were resuspended in 
1 ml of NIB-HEPES buffer. This step was repeated for a second wash, and nuclei 

were once again held on ice until ready to proceed. A 10-µl aliquot of suspended 
nuclei was diluted in 90 µl of NIB-HEPES (1:10 dilution) and quantified on either 
a Hemocytometer or with a BioRad TC-20 Automated cell counter following the 
manufacturer’s recommended protocols. The stock nuclei suspension was then 
diluted to a concentration of 1,400 nuclei per µl.

Tagmentation plates were prepared by the combination of 420 µl of 1,400 nuclei 
per µl of solution with 540 µl 2× TD Buffer (Nextera XT Kit, Illumina Inc. FC-131-
1024). From this mixture, 8 µl (roughly 5,000 nuclei in total) was pipetted into each 
well of a 96-well plate dependent on well schema (Fig. 1b). Then 1 µl of 2.5 µM 
uniquely indexed transposase was then pipetted into each well. Tagmentation was 
performed at 55 °C for 10 min on a 300 r.c.f. Eppendorf ThermoMixer. Following 
this incubation, plate temperature was brought down with a brief incubation on 
ice to stop the reaction. Dependent on experimental schema pools of tagmented 
nuclei were combined and 2 µl of 5 mg ml−1 4,6-diamidino-2-phenylindole (DAPI) 
(Thermo Fisher Scientific D1306) were added.

Nuclei were then flow sorted via a Sony SH800 to remove debris and attain 
an accurate count per well before PCR. A receptacle 96-well plate was prepared 
with 9 µl of 1× TD buffer (Nextera XT Kit, Illumina Inc. FC-131-1024,diluted with 
ultrapure water) and held in a sample chamber kept at 4 °C. Fluorescent nuclei 
were then flow sorted gating by size, internal complexity and DAPI fluorescence 
for single nuclei following the same gating strategy as previously described40. 
Immediately following sorting completion, the plate was sealed and spun down for 
5 min at 500 r.c.f. and 4 °C to ensure nuclei were within the buffer.

Nucleosomes and remaining transposases were then denatured with the 
addition 1 µl of 0.1% SDS (roughly 0.01% final concentration) per well. Then 4 µl of 
NPM (Nextera XT Kit, Illumina Inc.) per well was subsequently added to perform 
gap-fill on tagmented gDNA, with an incubation at 72 °C for 10 min. Next, 1.5 µl 
of 1 µM A14-LNA-ME oligo was then added to supply the template for adapter 
switching (Supplementary Table 3). The polymerase-based adapter switching was 
then performed with the following conditions: initial denaturation at 98 °C for 30 s, 
ten cycles of 98 °C for 10 s, 59 °C for 20 s and 72 °C for 10 s. The plate was then held 
at 10 °C. After adapter switching 1% (v/v) Triton-X 100 in ultrapure H2O (Sigma 
93426) was added to quench persisting SDS. At this point, some plates were stored 
at −20 °C for several weeks while others were immediately processed.

The following was then combined per well for PCR: 16.5 µl of sample, 2.5 µl of 
indexed i7 primer at 10 µM, 2.5 µl of indexed i5 primer at 10 µM, 3 µl of ultrapure 
H2O, 25 µl of NEBNext Q5U 2× Master mix (New England Biolabs M0597S) and 
0.5 µl of 100× SYBR Green I (Thermo Scientific S7563) for a 50 µl of reaction per 
well (Supplementary Tables 4 and 5). A real-time PCR was performed on a BioRad 
CFX with the following conditions, measuring SYBR fluorescence every cycle: 
98 °C for 30 s; 16–18 cycles of 98 °C for 10 s, 55 °C for 20 s, 72 °C for 30 s, fluorescent 
reading, 72 °C for 10 s. After fluorescence passes an exponential growth and begins 
to inflect, the samples were held at 72 °C for another 30 s then stored at 4 °C.

Amplified libraries were then cleaned by pooling 25 µl per well into a 15-ml 
conical tube and cleaned via a Qiaquick PCR purification column following the 
manufacturer’s protocol (Qiagen 28106). The pooled sample was eluted in 50 µl 
10 mM Tris-HCl, pH 8.0. Library molecules then went through a size selection 
via SPRI selection beads (Mag-Bind TotalPure NGS Omega Biotek M1378-01). 
Next, 50 µl of vortexed and fully suspended room temperature SPRI beads were 
combined with the 50-µl library (1× clean up) and incubated at room temperature 
for 5 min. The reaction was then placed on a magnetic rack and once cleared, 
supernatant was removed. The remaining pellet was rinsed twice with 100 µl of 
fresh 80% ethanol. After ethanol was pipetted out, the tube was spun down and 
placed back on the magnetic rack to remove any lingering ethanol. Next, 31 µl of 
10 mM Tris-HCl, pH 8.0 were then used to resuspend the beads off the magnetic 
rack and allowed to incubate for 5 min at room temperature. The tube was again 
placed on the magnetic rack and once cleared, the full volume of supernatant was 
moved to a clean tube. DNA was then quantified by Qubit double-stranded DNA 
High-sensitivity assay following the manufacturer’s instructions (Thermo Fisher 
Q32851). Libraries were then diluted to 2 ng µl−1 and run on an Agilent Tapestation 
4150 D5000 tape (Agilent 5067-5592). Library molecule concentration within 
the range of 100–1,000 base pairs (bp) was then used for final dilution of the 
library to 1 nM. Diluted libraries were then sequenced on high- or mid-capacity 
150-bp sequencing kits on the Nextseq 500 system following the manufacturer’s 
recommendations (Illumina Inc. 20024907, 20024904). For greater sequencing 
effort, select libraries were also sequenced on a NovaSeq S2 flowcell, again 
following the manufacturer’s recommendations (Illumina Inc. 20028315). For both 
machines, libraries were sequenced as paired-end libraries with ten cycle index 
reads and 85 cycles for reads 1 and 2.

s3-WGS library generation. A formatted stepwise protocol for s3-WGS is available 
for review at https://doi.org/10.17504/protocols.io.beb3jaqn.

Before processing, the following buffers were prepared: 50 ml of NIB-HEPES 
buffer as described above, as well as 50 ml of a Tris-based NIB (NIB Tris) variant 
with final concentrations of 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% (v/v) IGEPAL CA-630, 0.1% (v/v) Tween and diluted in PCR-grade Ultrapure 
distilled water. After dilution, two tablets of Pierce Protease Inhibitor Mini Tablets, 
EDTA-free were dissolved and suspended to prevent protease degradation during 
nuclei isolation.
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s3-WGS library preparation was performed on cell lines as follows. For 
patient-derived PDCL cell lines, cells were plated at a density of 1 × 106 on a T25 
flask the day before processing. At collection, cells were washed twice with ice-cold 
1× PBS (VWR 75800-986) and then trypsinized with 5 ml of 1× TrypLE (Thermo 
Fisher 12604039) for 15 min at 37 °C. Suspended cells were then collected and 
pelleted at 300 r.c.f. at 4 °C for 5 min. For suspension-growth cell lines (GM12878), 
cells were pipetted from growth media and pelleted at 300 r.c.f. at 4 °C for 5 min.

Following the initial pellet, cells were washed with ice-cold 1 ml of 
NIB-HEPES twice. After the second wash, pellets were then resuspended in 
300 µl of NIB-HEPES. Nuclei were aliquoted and quantified as described above, 
then aliquots of 1 million nuclei were generated based on the quantification. 
The aliquots were pelleted by a 300 r.c.f. centrifugation at 4 °C for 5 min and 
resuspended in 5 ml of NIB-HEPES. Next, 246 µl of 16% (w/v) formaldehyde 
(Thermo Fisher 28906) were then added to nuclear suspensions (final 
concentration 0.75% formaldehyde) to lightly fix nuclei. Nuclei were fixed via 
incubation in formaldehyde solution for 10 min on an orbital shaker set to 50 r.p.m. 
Suspensions were then pelleted at 500 r.c.f. for 4 min at 4 °C and supernatant 
was aspirated. Pellet was then resuspended in 1 ml of NIB Tris Buffer to quench 
remaining formaldehyde. Nuclei were again pelleted at 500 r.c.f. for 4 min at 4 °C 
and supernatant was aspirated. The pellet was washed once with 500 µl of 1× 
NEBuffer 2.1 (NEB B7202S) and then resuspended with 760 µl of 1× NEBuffer 2.1. 
Then 40 µl 1% SDS (v/v) was added and sample was incubated on a ThermoMixer 
at 300 r.c.f. set to 37 °C for 20 min. Nucleosome depleted nuclei were then pelleted 
at 500 r.c.f. at 4 °C for 5 min and then resuspended in 50 µl of NIB Tris. A 5-µl 
aliquot of nuclei was taken and diluted 1:10 in NIB Tris then quantified as 
described above. Nuclei were diluted to 500 nuclei per µl with addition of NIB Tris, 
based on the quantification. Dependent on experimental setup, the 420 µl of nuclei 
at 500 nuclei per µl were then combined with 540 µl of 2× TD buffer. Following 
this, nuclei were tagmented, stained and flow sorted, gDNA was gap-filled and 
adapter switching was performed as described for the s3-ATAC protocol. Library 
amplification was performed by PCR as described above with fewer total cycles 
(13–15) likely due to more initial capture events per library. Libraries were then 
cleaned, size selected, quantified and sequenced as described previously.

s3-GCC library generation. A formatted stepwise protocol for s3-WGS is available 
for review at: https://doi.org/10.17504/protocols.io.beb4jaqw.

The same cultured cell line samples were collected as described for s3-WGS 
library generation, and processed from the same pool of fixed, nucleosome 
depleted nuclei. Following quantification of nuclei, the full remaining nuclear 
suspensions (roughly 2–3 million nuclei per sample) were pooled respective of 
sample. Nuclei were pelleted at 500 r.c.f. at 4 °C for 5 min and resuspended in 90 µl 
of 1× Cutsmart Buffer (NEB B7204S). Next, 10 µl of 10 U µl−1 AluI restriction 
enzyme (NEB R0137S) were added to each sample. Samples were then digested 
for 2 h at 37 °C at 300 r.p.m. on a ThermoMixer. Following digestion, nuclear 
fragments then underwent proximity ligation. Nuclei were pelleted at 500 r.c.f. at 
4 °C for 5 min and resuspended in 100 µl of ligation reaction buffer. Ligation buffer 
is a mixture with final concentrations of 1× T4 DNA Ligase Buffer + ATP (NEB 
M0202S), 0.01% Triton-X-100, 0.5 mM DTT (Sigma D0632), 200 U of T4 DNA 
Ligase, diluted in ultrapure H2O. Ligation took place at 16 °C for 14 h (overnight). 
Following this incubation, nuclei were pelleted at 500 r.c.f. at 4 °C for 5 min and 
resuspended in 100 µl of NIB-HEPES buffer. An aliquot of nuclei were quantified 
as described previously, and were then diluted, aliquoted, tagmented, pooled, DAPI 
stained, flow sorted, gDNA was gap-filled and adapter switching was performed 
as described for the s3-ATAC protocol. Library amplification occurred at the same 
rate as the s3-WGS libraries (13–15 cycles) and libraries were subsequently pooled, 
cleaned, quantified and sequenced as described above.

Computational analysis. Preprocessing. The initial processing of all library 
types was the same. After sequencing, data were converted from bcl format 
to FastQ format using bcl2fastq (v.2.19.0, Illumina Inc.) with the following 
options: with-failed-reads, no-lane-splitting, fastq-compression-level = 9, 
create-fastq-for-index-reads. Data were then demultiplexed, aligned and 
deduplicated using the in-house scitools pipeline40. Briefly, FastQ reads were 
assigned to their expected primer index sequence allowing for sequencing error 
(Hamming distance ≤2) and indexes were concatenated to form a cellID. Reads 
that could be assigned unambiguously to a cellID were then aligned to reference 
genomes. For s3-WGS and s3-GCC libraries, paired reads were aligned with bwa 
mem (v.0.7.15-r1140) to hg38 (ref. 38). For s3-ATAC libraries, reads were first 
aligned to a concatenated hybrid genome of hg38 and GRCm38 (mm10, Genome 
Reference Consortium Mouse Build 38 (GCA_000001635.2)). Reads were then 
deduplicated to remove PCR and optical duplicates by a perl (v.5.16.3) script aware 
of cellID, chromosome and read start, read end and strand. From there putative 
single cells were distinguished from debris and error-generated cellIDs by both 
unique reads and percentage of unique reads.

s3-ATAC analysis. Barnyard analysis. With single-cell libraries distinguished, 
we next quantified contamination between nuclei during library generation. We 
calculated the read count of unique reads per cellID aligning to either human 
reference or mouse reference chromosomes (Fig. 1c). CellIDs with ≥90% of reads 

aligning to a single reference genome were considered bona fide single cells. 
Those not passing this filter (2.7%,19/687 cells for pretagmentation barnyard) 
were considered collisions. Collision rate was estimated to account for cryptic 
collisions (mouse cell–mouse cell or human cell–human cell) by multiplying by 
two (final collision rate of 5.5%, Fig. 2b). Bona fide single-cell cellIDs were then 
split from the original FastQ files to be aligned to the proper hg38 or mm10 
genomes with bwa mem as described above. Human and mouse assigned cellIDs 
were then processed in parallel for the rest of the analysis. After alignment, 
reads were again deduplicated to obtain proper estimates of library complexity 
(Supplementary Fig. 6).

Tagmentation insert quantification. To assess tagmentation insert size, samtools 
isize (v.1.10) was performed and plotted with ggplot2 (v.3.3.2) in R (v.4.0.0) 
using the geom_density function (default parameters, Fig. 2e). To assess library 
quality further, we generated tagmentation site density plots centered around 
tTSSs. We used the alignment position (chromosome and start site) for each 
read to generate a bed file that was then piped into the BEDOPS closest-feature 
command mapped the distance between all read start sites and TSSs (v.2.4.36)41. 
From this, we collapsed binned distances (100-bp increments) into a counts 
table and generated the percentage of read start site distances within each counts 
table. We plotted these data using R and ggplot2 geom_density function (default 
parameters) subset to 2,000 base pairs around the start site to visualize enrichment. 
TSS enrichment values were calculated for each experimental condition using 
the method established by the ENCODE project (https://www.encodeproject.org/
data-standards/terms/#enrichment), whereby the aggregate distribution of reads 
±1,000 bp centered on the set of TSSs is then used to generate 100-bp windows at 
the flanks of the distribution as the background and then through the distribution, 
where the maximum window centered on the TSS is used to calculate the fold 
enrichment over the outer flanking windows (Fig. 2f).

Library complexity analysis. To project library complexity through sequencing 
effort, pre-deduplicated cellID read sets were used to build a projection as follows8. 
Reads were randomly subsampled starting at 1% of the total reads with 5% of data 
added in increasing increments to build a simple saturation curve per cellID. A 
summarized saturation curve per species was generated and plotted in ggplot2 
using the geom_smooth function, descripting the curves mean, median and 
standard error. For comparison to publicly available datasets of a matched tissue 
type, we focused our analysis on the mouse brain libraries. We plotted our PCR 
plate sequenced to 36.4 ± 17.4% unique reads/total reads for comparison to three 
other single-cell ATAC-seq methods that have been applied to postnatal mouse 
whole brain (n = 3,034, 5,336 and 46,653 for snATAC, 10× Genomics scATAC 
and dscATAC, respectively)13–15. Our data were filtered to just unique reads that 
were properly paired via the samtools view ‘–f 2’ argument to allow for proper 
read-count comparison across datasets that report read pairs or fragments. 
Data passing self-reported filters were used for comparison and plotted with the 
ggplot geom_boxplot function (Fig. 2d). Welch’s two-sample t-test comparisons 
between unique reads per cell were calculated with the t.test function in base R 
for a one-sided alternative hypothesis. For peak overlap comparison, we added an 
additional sci-ATAC low sequencing effort dataset21 performed on adult mouse 
flash frozen brain tissue. We then counted unique peak overlaps between datasets 
and plotted as stacked bar plots via ggplot geom_bar function (Fig. 2g).

For assessment on sequencing effort necessary to reach a median unique 
reads per cell threshold, we compared our s3-ATAC mouse data to the publically 
available sci-ATAC matched sample data21. We randomly subsampled the bam 
files pre-deduplication and calculated per cellID library complexity, as described 
above10,21. The resulting model was plotted with geom_line. We then calculated 
amount of PCR duplicate reads at that threshold for sequencing effort comparison 
(Supplementary Fig. 1e).

Dimensionality reduction. Pseudo-bulked data (agnostic of cellID) were then used 
to call read pile-ups or peaks via macs2 (v.2.2.7.1) with option --keep-dup all42. 
Narrowpeak bed files were then merged by overlap and extended to a minimum 
of 500 bp for a total of 292,156 peaks for human and 174,653 peaks for mouse. A 
scitools perl script was then used to generate a sparse matrix of peaks × cellID to 
count occurrence of reads within peak regions per cell. FRiP was calculated as the 
number of unique, usable reads per cell that are present within the peaks out of 
the total number of unique, usable reads for that cell for each peak bed file. Cells 
with less than 20% of reads within peaks were then filtered out. Tabix formatted 
files were generated using samtools and tabix (v.1.7). The counts matrix and tabix 
files were then input into a SeuratObject for Signac (v.1.0.0) processing19,43. We 
performed LDA-based dimensionality reduction via cisTopic (v.0.3.0) with 27 topics 
for mouse cells and 24 topics for human cells17. The number of topics were selected 
after generating 25 separate models per species with topic counts of five, ten, 20–30, 
40, 50, 55 and 60–70 and selecting the topic count using selectModel based on the 
second derivative of model perplexity. Cell clustering was performed with Signac 
FindNeighbors and FindClusters functions on the topic weight × cellID data frame. 
For FindClusters function call, resolution was set to 0.3 and 0.2 for human and 
mouse samples, respectively. The respective topic weight × cellID was then projected 
into two-dimensional space via a UMAP by the function umap in the uwot package 
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(v.0.1.8, Fig. 2h)44. Cis-coaccessibility networks were generated through the Signac 
wrapper of cicero (v.1.3.4.10)45. Genome track plots with cis-coaccessibility network 
linkages were generated through Signac function CoveragePlot for marker genes 
previously described (Supplementary Fig. 1a)19. Differential accessibility between 
clusters in one by one, and one by rest comparisons were generated using Signac 
function FindMarkers using options: test.use = ‘LR’ and only.pos = T, with latent.
vars = ‘nCount_peaks’ to account for read depth. Cell type per cluster was assigned 
based on genome track plots and differentially accessible sites (Supplementary 
Tables 6 and 7and Supplementary Information).

Subsampling. For subsampling analysis, the processed, deduplicated bam files 
were split by cellID into single-cell bam files. Each bam file was then subsampled 
randomly using samtools view --s argument for 0.5, 1, 2, 5, 10, 15, 20, 40, 50, 60 
and 80%, respectively. Following this single-cell subsampled bams were collated 
respective of downsampling percentage and processed through peak calling, 
dimensionality reduction and projection as described above with the following 
exception. Topic model generation was limited to ten and 20–30 topics. Number 
of peaks callable per downsampled dataset were plotted via geom_bar. The final 
projections were plotted via geom_point with the color of the cell type assignment 
in the full dataset (Supplementary Fig. 1b–d).

Cross-platform integration. Data used in library complexity and peak overlap 
comparisons were integrated using the Signac package as follows46. Counts 
matrices were generated using the platform-defined peak regions and formatted 
as Seurat objects. For each integration, our s3-ATAC mouse data, we generated 
a new counts matrix was generated from the platform-defined peaks. Following 
this, counts matrices were merged and latent semantic indexing (lsi) was used for 
reduction. Harmony was used to integrate, and a UMAP projection was generated 
using dimensions 2–30 for sci-ATAC, scATAC and snATAC datasets and 2–40 for 
dscATAC47. Integrated plots were generated using our defined cell types (Fig. 2i).

Subclustering. After gross cell type assignment of mouse and human cell lines, 
human inhibitory neurons (GAD1+) clusters 3 and 4 were subset from the 
SeuratObject. Those 342 cells were then iteratively clustered by performing the 
same cisTopic, UMAP and Signac processing with the following changes19,44,48. 
CisTopic was performed on the full set of human peaks (292,156) with those 342 
subset cells. Twelve topic models were constructed (5, 10, 20–30 topics) and the 
25 topic model was chosen on the second derivate of the model perplexity. A 
resolution of 0.5 was used in the Signac FindClusters on the topic weight × cellID 
call to attain five subclusters. One cluster was removed based on putative doublets 
(Fig. 3a). Coverage plots were generated as reported above for ADARB2 and LHX6 
(Fig. 3b). Peaks were then assigned to topics using the cisTopic binarizecisTopics 
function with argument thrP = 0.975 (mean count per topic, 2,429 peaks). We then 
performed a simple gene set enrichment analysis on human cortical inhibitory 
neurons and subtypes based on RNA-identified marker genes defined previously20.
We used a Fisher’s exact test with the function fisher.test with function alternative.
hypothesis = ‘greater’ to look for enrichment of topic-assigned peaks in marker 
gene bodies for inhibitory neuron subclasses relative to all topic-assigned peaks. 
We filtered results to those with nominal enrichment (P ≤ 0.05) and used ggplot 
geom_point with color reflecting the reported P value and size proportional to 
odds ratio to generate a bubble plot (Fig. 3c).

s3-WGS and s3-GCC analysis. Quality control. s3-WGS and s3-GCC cellIDs were 
initially filtered to samples with either ≥1 × 105 or ≥1 × 106 unique reads (PDCL 
and GM12878 samples, respectively). CellIDs were split after deduplication into 
single-cell bam files. They were then processed via the pipeline in the package 
SCOPE (v.1.1)23. The genome was split into 500-kb bins with each bin being 
assigned a GC content and mappability score (generated through CODEX2)49. 
Reads with a mapping quality of Q ≥ 10 were counted in bins per cellID. Bins 
with a mappability score <0.9 or GC content ≤20 or ≥80% were removed (5,449 
bins passing filter). Additionally, cellIDs with low coverage were removed (1,268 
samples passing filter). MAD scores were calculated per cell on 500-kb bins of cells 
passing filter as previously described23. Briefly, let Yi,j be the raw read count for the 
ith cellID of the jth bin (from 1... n bins). Let Ni be a cell-specific scaling factor 
(total read depth) and Bj be a bin-specific normalization, output as beta.hat from 
the function normalize_codex2_ns_noK, such that

MAD scorei = median (|d − median(d)|)

where d =

Yi,j
NiBj

−
Yi,j+1
NiBj+1

(

∑n
j=i

Yi,j
NiBj

)

/n

MAD scores were then plotted using the ggplot geom_jitter and geom_boxplot 
functions (Fig. 4e).

Copy number calling. SCOPE assumes diploid cells within the sample for 
normalization steps. To this end, we used GM12878 lymphoblastoid cell line 

as our normal diploid samples and used an a priori estimate of 2.6N based on 
averaged PDCL karyotyping results (Fig. 4c). We then used the SCOPE function 
normalize_scope_foreach with the following options: K = 5, T = 1:6 to normalize 
read distributions per cell. We segmented the genome into breakpoints per 
chromosome and inferred copy number per breakpoint per cell by segment_CBScs 
allowing for a simple nested structure of copy number changes (max.ns = 1). 
To plot inferred copy number per cell, we used the R library ComplexHeatmap 
(v.2.5.5) by function Heatmap50. Pairwise distance between cells was generated 
by Jaccard distance through the R library philentropy (v.0.4.0)51 on windows 
categorized as neutral (2N), amplified (>2N) or deleted (<2N). Cells then 
underwent hierarchical clustering by the ward.D2 argument in the function hclust. 
The resultant dendrogram was then cut into both three and six clades based on 
the two independent optimal k value searches using the find_k function in the R 
library dendextend (v.1.14.0) given a range of two to ten and five to ten clusters, 
respectively (Fig. 5b)52. Cells with shared clade membership were then combined 
into pseudobulk clades for higher resolution copy number calling. After combining 
counts data across 50-kb bins (and filtered as described above), we had six clades 
with 154, 250, 363, 100, 268 and 133 cells, with mean reads per bin of 1,207, 
2,442, 4,662, 2,071, 2,700 and 9,416, respectively. These pseudobulk sampled were 
then normalized as described above with clade 6, containing 83.45% GM12878 
cells (111/133 cells) as the normal diploid sample. The genome per sample was 
then segmented as described above and normalized reads per bin as well as 
segmentation calls were plotted with ggplot2 geom_point and geom_rect functions 
(Supplementary Fig. 2a). Select genomic locations25 of recurrently mutated genes 
were visualized and plotted using IGV with five bins (250 kb) up- and downstream 
from the TSSs (Supplementary Fig. 2b)53.

Generation of GCC contact profiles. s3-GCC contact profile raw counts were 
generated for cellIDs passing the read count and SCOPE filters (215 cells) as 
follows. For initial plotting of single-cell profiles, paired-end read bam files were 
filtered for an insert length of ≥50 kb via pysam54 and output as upper-triangle 
triple-sparse format at 1-Mb bin sizes. Raw contact matrices were then plotted with 
R and ComplexHeatmap (Fig. 5c, left). Merged ensemble plots were generated by 
summing single-cell contact matrices generated as described above for 500-kb bins. 
Following this, we performed dimensionality reduction and clustering analyses 
using a topic-modeling approach. We treated the GCC portion of single-cell 
sequencing fragments (read pairs separated by a genomic distance higher 
than 20 kb) as traditional distal interactions. We analyzed these cells using our 
previously established topic model for analysis and characterization of single-cell 
HiC data31. In the topic-modeling framework, each cell is treated as a mixture of 
topics where each topic corresponds to a set of distal interactions. The model is 
trained in an unsupervised manner to find the optimum number of topics that best 
describe the data and associates each distal interaction with a probabilistic mixture 
of topics.

We trained a topic model using the GCC data with the default parameters 
in Kim et al. However, we altered one parameter, which is the range of distal 
interactions that are input into the model. Due to high coverage of s3-GCC assays, 
we opted for distal interactions that are separated by a genomic distance of 20 Mb 
or less, as opposed to original parameter where we used interactions that are 
separated by distances lower than 10 Mb. After training, we found that the number 
of topics that best describe the data is 15. We visualized cells using UMAP and 
found that most cells from two lines cluster separately (Fig. 5c). Overall, these 
results validate the HiC-like characteristics of GCC data and further show that we 
can capture the subtle differences in chromatin organization of the two lines.

Compartment calling. We called compartments from pseudobulk HiC contact 
matrices and calculated contact probabilities as described in the original HiC paper 
by Lieberman-Aiden et al.55. We briefly describe these methods here. To obtain 
compartment calls, we first normalized using iterative correction and eigenvector 
decomposition (ICE) and removed the distance effect in HiC matrices for each 
chromosome at 500-kb resolution. For each normalized HiC contact matrix, we 
calculated the Spearman Correlation Coefficient matrix from the normalized HiC 
matrix, which yields a matrix with clear plaid pattern. Resulting matrices were 
reduced to one dimensional representation by performing eigendecomposition; 
the first eigenvector typically yields the compartment calls, which closely tracks 
the two-dimensional plaid pattern in one dimension. For comparison we used 
compartment calls from Rao et al.35. on the GM12878 cell line (Fig. 5c, right).

Calculation of contact probabilities. To calculate intrachromosomal contact 
probabilities for each genomic distance, we first calculated the mean HiC signal at 
a given genomic distance for a given resolution. For a HiC matrix binned at 500-kb 
resolution, the mean HiC signal for distances less than 500 kb is the mean of the 
diagonal, the mean HiC signal for distances between 500 and 1,000 kb is the mean 
of the first off-diagonal, and so forth. After calculating the mean HiC signal vector 
for the every intrachromosomal matrix, we obtain a mean HiC signal vector at 
500-kb resolution that contains 500 elements, ranging from 0 to around 250 Mb, 
since the largest chromosome (Chr1) is approximately 250 Mb long. To convert this 
vector into probabilities, we simply divide the vector by the sum. When plotting 
contact probabilities, we typically omit the visualizing the contact probabilities 
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for distances larger than 200 Mb, as the mean HiC signal at such long distances is 
both sparse and noisy. External bulk HiC datasets have been downloaded from the 
ENCODE consortium’s data portal, https://www.encodeproject.org/ via accession 
codes ENCSR194SRI, ENCSR346DCU, ENCSR444WCZ and ENCSR079VIJ 
(Supplementary Fig. 3a).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data discussed in this publication have been deposited in the National 
Center for Biotechnology Information’s (NCBI’s) Gene Expression Omnibus 
(GEO) and are accessible through GEO Series accession number GSE174226. 
External single-cell ATAC datasets were downloaded from GEO sample accession 
number GSM2668124 for snATAC, and external sites for dscATAC (https://
github.com/buenrostrolab/dscATAC_analysis_code/blob/master/mousebrain/
data/mousebrain-master_dataframe.rds) and 10X Genomics scATAC (https://
cf.10xgenomics.com/samples/cell-atac/1.1.0/atac_v1_adult_brain_fresh_5k). 
The external single-cell WGS dataset was downloaded from NCBI BioProject 
PRJNA326698 (https://www.ncbi.nlm.nih.gov/sra/SRX2005587). Single-cell 
HiC datasets were downloaded from the 4D Nucleosome project (https://
data.4dnucleome.org/publications/048d4558-2cac-41d2-ac6e-ff2ac3f007c4/#exps
ets-table). External bulk HiC datasets have been downloaded from the ENCODE 
consortium’s data portal, https://www.encodeproject.org/ via accession codes 
ENCSR194SRI, ENCSR346DCU, ENCSR444WCZ and ENCSR079VIJ. Source data 
are provided with this paper.

Code availability
Code and custom scripts used in this study are available at https://github.com/
adeylab/scitools and https://mulqueenr.github.io/.
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